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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO.1174
. . ,.,.,...,, ,._., ,.

ANAL~ICAL TREATMENT OF NORMAL C!ONIENSATIONSHOC@

By Heybey

INTRODUCTION

The condensation of water va~or in an air
consequences:

1.

2.

3.

Acquisition of heat ‘(liberatedheat of

stream has the following

vaporization)

Loss of mass on “I~hepart of the flowing gas (water vapor is
converted to liquid)

Change in the specific Has constants and of’the ratio k of
th~ s~ecific ~eats (c~used by change of gas composition)

A discontinuous change of state is there?ore connected with the
condensation; schlieren photographs of supersonic flows in two-
dimensional Laval nozzles show two intersecting oblique shock fronts
that in the case of high humidities me,ymerge near the point of inter-
section into one nmrmal shock front. The following discussion will
deal with normal shock fronts only; it will be assumed that the
velocity vector may be considered as being at right angles to the
shock front (one-dimensionaltheory).- All flow properties directly
ahead of the shock will be designated by the subscript 1, all those
directly behind the shock by the subscript 2, all those referring
]0 a stagnation condition by the subscript and all those applying
in the narrowest cross section of the nozzle“F* by an asterisk.
[NAcA comment: Particular attention is called to the fact that
capital T denotes stagnation temperature only when used with the
subscript o. Otherwise it denotes static temperature.] The sonic
velocity will be denoted by a, and the flow velocity by w.

The following equation exists for the sum of kinetic and caloric
energy (enthalpy’i = CPT) per unit mass of the flowing gas:

*~lYtische Behandlung des geraden Kondensationsstosses.

Heeres-Versuchsstelle,Peenemfinde,Archiv Nr. 66/72, I&z 30, 1942.
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2 NACA TM No.1174

(1)

“Directljjbehind the shock the constant total energy i. has been
supyle’mentedby a quantity of heat energy per unit mass q as follows:

W22 lk+la*,2—+i2=io,+q= io’2 ‘Zm (1’)

~fj ~ause io’ > io, for tlm description of the ‘flowbehind the shock
a higher stagnation temperatjur~mustbe syecifisd than that which

——
.—..—chmx%cter~,zedthe flow b=fore the shock..—

It will become apparent later that the values of PO, Po, and
W must also be charqged.From equations (1) and (1’) for a*, is
obtained

(2a)

~* I

as Q was tl.nu.sdefined as an abbreviation for ~-, ano-~herequa-
tion may be written

10’ To‘
—=—.- =
i. To

Q2 (>1)

From equation (2b) it follows that with io’ = i. + q

The quantity Q (inherentlypositive) is clearly determined by the
ql~antityof heat of vaporization liberated; Q increases with that
quantity.

The low in mass of flowing gas due to condensaiionl as well as
the alteration of the gas constants and o: k will be 2,sscmedto be
so small that they may be disregarded. Other conditions being the
same (for example, relative humidity = 1.’30percent), this assumpi~.on
becomes nore exact in proportion as T,. is lcwei”. If ‘C,ksa.r ~io-.~s
into the Laval nozzle from the free atmosphere with To s~-:roxi-
mately 273° K, the gravirne-brieproportion of sa’~uratedwater
2 to 3 percent (this proportion remains the sa,methrcugh all
of state so long as these changes occur without gain or loss
vapor),

~rap~ris
changes
of water
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Accordinglyj the following equations apply:
.. .
PI WI = P2 W2 (4)

ti~ + PI VIZ =P2+P21$22, (5)

(6)

The equations (4), (5), and (6) express the constancy of the
mass flow, the momentum, and the specific gas constants R. Together
with equations (1) and (l’), these equations constitute the basic
equations of a simplified theory O: the normal condensation shock.
If the condensation occurs in a subsonic flow, the associated pressure
change, because it i~ propagated at sonic speed, quickly spreads
throughout the whole fl.cw. The same pressure spread applies to all
aspects of the chance of state. J!Toshock phenomenon can develop.
Therefore, in the followiw discussion a fundamental assumption is
that W1 is a supe:-sonic\’eLoCity.

CHANGE OF STATE AT SITE OF SHOCK

A suitable combination of the five basic equations leads through
a rather long mathematical process, which will “Dec~mittedhere, to
the followin~ relation: -

WQ W1 W2 — a*’2
L

WY = w, WT — a*2
(7)

For a+’ = a* (Q = 1) this

By introductionof the

AL

becomes the l?randtlformula W1 wz = a~+2,

abbreviations

WI w?
=
‘1 and - . X2a~ ;*T

equa~i~n (9) is obtained

W2 X2
—.
W1 Q<

From equation (7) is obtained

(8)
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X2 ‘1 X2-Q
—Q= -———xl 1

X1X2–Q

or

1 + X12
X22 - X2 ——+1=0

Qxl
(7a)

From these equatioi~e,an equation to be used subsequently is obtained

Qx~ (1+X22) =X2 (1 +X12) (7b)

and by further conversion

W.2 W22 + a*’2
----=
‘1 W12 + a*2

which is another fom of equation (7).

The solutio~ of equation (7a) defines

(7C)

X2 as a fvnction of xl

and Q. With the aid of this equation, simple expressions for P2/Pl>

T2/T1j Ma2/Mal, ar.(?g2/pl may he derived, [NACA comment: Ma,
Mach number.]

From equatione (4) and.(?) it follows that

P2 1 ‘1.— (9)
‘=Qx2PI

If the well-known relation between T/T. and w/a* is applied
to T1/To and T2/To’, by consideration of equation (2b) also, the

following equation is obtained:

1
k-1 2

T2 - —- X2
- Q2

k+l
T~,- ~ k-? -Z-—xl

k+z

Because furthermore}

(lo)
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it follows that

II
.——.

k-1
Ma2 X2 1 - ~-+~X12

mizii kl‘q ---- 2
1 ki-1‘2

5

,.-,. ,-.—,—.

(11)

From’equation (6) and with the aid of equations (9) and.(10)

P2 xl 1–=X22 1 + X12 - &2 Qx~x2
- Q — –—--—” =

~- X21 k-l
(12)

- ~~ X12 1
k-1 2- -—
k+l ‘1

The expression on the right is derived from the middle expression
by the application of equation (7b).

The solution of equation (7a) is

1 + X12 +X1 +X12)2 –4.Q2x~
X2 = -, ——

2QX1

Because X2? a ratio of velocities, must be a real number, from the
previous equation an upper limit is obtained for Q; the lower limi-t.
is by definition Q= 1. It is evidently true That

1 -i-Xf
~~Q~

2X1 “ (13)

‘1Because in the supersonic region -&> 1, accordin@y the absolute
value of the root is found to be

(Xf - 1) 2 /-(1+xf)~ - 4Q2X1220

In order to decide the sign of
being variable, the values X2
must first be determined. For
appears that

the root, xl being fixed and Q
may assume for each of I-hetwo signs
the variation of x2 with Q’ it

axz X2 (1 + Xlq

F=* .—
Q -)2 - 4Q2X12

where the absolute value of the root is in the denominator. With
the minus sign, x2 is a continually decreasing function of Q,
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whereby it follows from equation (13) that

( 14a)

Correspondingly,with the plL~ssign (X2 increasing with Q) it is
found that

(14b)

In the first case, the air flow directly behind the shock is always
moving at supersonic velocity; in the second case, always at subsonic

1 + X12
velocity. Only for Q = %x . —-—2X1 is exactly sonic velocity

found in both cases.

The first possibility is supported by experimental findings. In
the schlieren photographs, Mach waves or shock fronts %oth of which
can arise only at supersonic velocities may be observed behind the
shock or at least at a certain distance downstream. If subsonic
velocity existed directly behind the shoe’k,a subfiequentconstriction
of the cross section of the flow filaments would have to occur (in
order to produce a minimum cross section), This course of the flow is
improbablebecause the shock always occurs at a point where the walls
diverge downstream. Therefore the pcsitive sign must be chosen for
the root

1 + X? + a/~~2TT- 4Q2x12
x2=— ———.- ..—. ——

2Qx~
(7d)

and equation (14a) is obtained. The normal condensation shock effects~q—— ......——..._-..—..
a change from one su-oersor.icveloc~t]

_--T -—.—.— —.
+,0pnothc:;:uge’:son~cvelxity..*.—. .— .-..-—-.—..—...—.

The nomo~a~ 1) shows
.—-———,-—.—.— .--..-—-— ——

tilerek.tion ‘wb-~eon Q, ~~1, and x2
as determined by equation (?d). In regard tc the end point of the Q
scale, see the remarks at the end of this section.

After the sign of the rooi has bee~,determined, X2 = w~/a~-’ is

clearly a function of xl and Q. ‘Tinesame relation is therefore true
of the quotients in equations (8) to (12). No change is effected in
this respect if the quotients are multiplied by xl, 01/’00) ‘Tl/Tb,

Mal, ‘r pl/po because these quantities are also clearJJ ftinctions

of xl = wl/a*. Because the quantity xl is in turn clearly a func-
tion of the Mach number Mal immediatelyahead of the shock and Q
is clearly a function of q in accordance with equation (3), the
following principle is obtained:

---9
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Pressure, density, temperature, Mach number, and velocity imme-
diate~beh.i.nda normal condensation s~ck are clearly determined by. .—
the Mach nwber at which the shock occurs and by the quantity of heat

..—

liberated. ‘————-——
——.

Thus both these quantities must be known if determinations of
the conditions directly behind the shock are desired (assmning that
PC), PO) To) and a* “areknown). Instead of t’heMach number, the
given quantity may, of course, be wl/a*, P /Yo9 Pi/P@

t
T1/To, or

F*@ because in the supersonic region all tlese quantities may be
expressed as functions of each-other,

At what Mach number (or temyeratu~e) the supercooled vapor
condenses, in what quantity the water is precipitated, and how much
heat is accordingly suy~lied to the air stream, are questions that
the resources of gas dynamics are insuffi~j.elltto answer; hence,
Ma~ and q mlmt be re~arded here as variables that are inde~endent
of one another. However, i.naccordance with equation (13), there is
for every value of xl (or Ma,) a maximum for Q, and hence also
for q. Therefore, i+ the cond&satio.n occurs at & certain Mach—— .——.—
number WI,

.—.—. ——.
the liberation of more heat than a certain maximum.— .—.—

determined by Mal is impossible.
-.——
From equation~~~.—

~s obtained

(13a)

Forxl=l, q=O. Hence the .norml co.nde.nsatio.nshock never
occurs in the narrowest cross section of the nozz>; supersol~~c
velocity mus~first liavebeen attained.

With consideration of equations (13) and (14a), the l.im~.tsmay be
tietermi.nedbetween which, with a given value of xl (that is, with a
;;ien site of the shock), the quotients in equations (8) to (1.2)must

, From what has been said in connection with equation (1.4a),it
is evident that X2 decreases as Q increases. In accord with equa-
tion (8), the same relation is also true for W2/w~, whereby

=’W2 ‘l+X1 2
1=—= (8a)

‘1 2X12

In accordance with equation (4), the quotient p2/Pl acts in t~]e
contrary manner

— .—
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P2 2X12
Is —~

PI 1 + X12
(9a)

It is evident from equation (10) that T2/Tl increases simultaneously
with Q; that is

T2 2 (1 -1-X12)2

l~q~—
(

k+14x12 ~ — k!.Exl2
)k+l ,

( 10a)

The ratio

w2/wl and

Maz T?2 r~1—=————— d.e~reaseswith increasj.~
Mal VI T2

Q (because

T1/T2 decrease).

(ha)

Because p2/pl and T2/Tl increase, p2/pl also must }nCre&Se

in accordance with equation (6). If Q = Qmx, the root in equa-
tion (7d) is eliminated and the equation becomes:

qJdfl% = 1 + Xf

From equati.m (12) is derived

P2 1 + X12
l~Eg*

1
k-l 2–—xl
k+l

(12a)

The limits in the left side of equations (8a) to (12a) are valid
for Q = 1, that is, for the case in which no condensation shock is
present at all. It is evident that:

The ordinary normal compression shock, which occurs when a flow
meets suyerior pressure, has these same characteristics. Nevertheless,
the compressiorishock must be regarded as something different in
principle from the condensation shock, which is initiated by the intro-
duction of a quantity of heat. The difference is shown by the fact,
among others, that the compression shock always produces subsonic
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velocity. Also in such a case the ratio w2/w~ = l/xl2 decreases
with,increasing X11 whereas in the case of the condensation shock
it increases, as may be seen from the derivative that
from equation (7d):

may be obtained

>0

because

Q>l and xl > X2

The same statements apply for the absolute value of the velocity
W2 . In re~ard to the compression shock, this follows from the Prandtl

;act that;; =Y;;gl;Pquation in regard to the condensation shock, from the
increases with xl) X2 and therefore W2 = a*’x2

must also increase. The quotient P2/P1 acts in the opposite manner.

dk+landIn the case ~n which ‘~ = ~ — pl = PI=TI=O, the
k–1

forml.a presented in equation (7) is inapplicable. For as soon as
this extreme condition is approached, the concepts and therefore the
equations of continuity that were used in the derivation of equa-
tion (7) no longer apply.

If this inapplicaticjnis disregarded for the moment, equation (7)
is valid for all shocks occurring at finite nozzle cross sections

(/ z--+-l\
‘l<~k–lf” The condition

tion with equation (7) gives

Qmx =

expressed in equation (13) in conjunc-

a function that increaseswith xl if xl> 1. If the quantity xl..
‘%=-i
/

is a~lowed to approach its maximum value —‘k – 1’
an (unattainable)

absolute upper limit for Q is obtained as follows

v
!,

...1__ _- ___ . ... .- —.—.
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To this ’valuethere corresponds an absolute maximum value for the
quantity of heat liberated; from equation (13a) is obtained

i.
%&x max = —— Z1.027 i.~2_1

Thus no more heat than this can be added by a normal condensation
shock under any circumstances. If for example To = 273° C, with

Cp = 0.238
calorie

the following is obtained:
gram degree

In figure 2, %x and in figure 3,(q/io) are shown as functions
of ‘i”

RATIOS Po’/po, po’/po, AND F*’/F*

Increase of Entropy

It was yointed out in the Introduction that for the description
of the flow behind the normal condensation shock a stagnation temper-
ature To‘>TO must be specified. In the following discussion, it
will be shown, first by means of a special case, that F*, Po) and
Fo also must be altered.

It follows from equation (ha) that for Q = Qmx the following
equation applies

Pk2 = (Ma2)min = 1

In this special case, exactly sonic velocity occurs directly
behind the shock. Because this occurrence, however, is always present
in the narrowest cross section of a flow, the shock cross section
Fs > F* is therefore to be regarded as the minimum cross section with
respect to the flow lehind the shock.

On the same basis, the relations must be written in this case

P2 = P*’ and p2 = p*’

From equations (9a) and (1’2a)it also follows, that if pl/po and

-—
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P1/Pn are expressed in “termsof xl’ according to known procedure
aid if the expressions for. ... P*/PO and P*/PO are introduced

J.

/
p*l =

normal isentropic flow exists behind the shock (if a secondBecause a
condensation is excluded],

p*l P* [1‘2 &

[)‘=— ‘k+lPo’ P.

P*; P* [1 i+i()2—. = — . .——
PO* Po k-t-l, J

therefore

Po‘—=
PO

P*+1

( 15a)

(lsll)

The relations that have thus been found for Q = Qmx, namely,

Po’ $Po, Po’ ~Po, and F* ’> F*, will be proved for Q~~x
also and at the same time will be more precisely expressed.

If Po’/po equals K and the calculationsare started from the
identity

(PX

,[\

g P2
K=

72—, X

\–/\po‘

,,
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by use of known gas-dynamic”i’ormulasand equation (12) the following
expression is obtained:

7

(1 + X12 )-ii%‘1X2 (16)

In view of equation (7d), it is evident that the ratio Po~/Po is a

function of Q and xl, that is, the ratio depends upon th~ quantity
of heat q li%erated by the condensationand upon the Mach number
directly ahead of the shock. Thus the ratio can have the value of 1
only for ce~~in special values of’these variables. In order to obtain
so?n~basis for the”determindion of the ~ossible range of values of K,
the behavior of K with the variation of Q and xl will next be
investigated,

With regard to Q (xl being held constant), it is sufficient to
confine the investigation to the expression

(i?=1-

Then

a~ 2k

(Xi=ml-

By application of
O and therefore

The ratio po’/po

k.—

k -1
k-l

)(k+lx22 1 + X12
)- & ‘1X2

-—

‘+X29‘;’p%b‘1’‘f) ‘X1’ ‘XJ+11
- X1X2 (

k-1-—
< )]

k+l x22

equation (7b), the quantity in the brackets becomes

decreases (at a given value of wl/a*) with increasing

~. The maxi.rnumvalue of K is thus reached at the minimum value of
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Q=l. In this case, a*’ = a* and X1X2 = 1. Thus from equa-
tl.!m(16) ,i_s.oBtained . . . .. .... . .. . ... .

%3X = (17a)

This formula is naturally the same as that applying to the ordinary
normal compression shock for poJ/po. The maximum value that K&x
can assume through the variation of xl is accordingly reached when
xl = 1 with ~xux = 1. This may also be mathematically shown

d%ax
Zk-1 (xf’ – 1)

2k 2-k ‘1
q=”—” k+l%ax

k-l)z(X2 --––\l k+l/

Ik+l
Because — .—l~xl~~\lk_l~ the derivative is negative (except at the

limits of the range’of values of xl where it disappears). For
xl . 1 there is thus a maximum value of ~ax (namely, %x = 1,,—-.—

and for
d
k+lxl = ~_y a minimum value (namely, %x = O)j which at

the same time is the smallest conceivable value for K (because
Po‘/Po cannot become negative). Hence

,.
,,

,-,

Po‘
0< —51

- Po
(18)

The ratio of stagnation pressure po’/po lies between O and 1 and

assumes the second value only if the condensation shock is rmnexibtent.
TBecause in the derivation of this theorem the sign &

——... ———— —

J(1 + X12)2 - 4Qx12 plays no part, It is valid for both signs.)
Accordingly it is permissible to describe K as a throttling factor
as is customary in compression bhoc”ktheory.

When Q = %x, a minimum value of K is reached for the given
value of xl

[(

&
1+X12 k+l k

j

-1 2’
%in= 2 — —2 l–k+lxl (17b)

--m--- ,--1.m. , , , ,,,, , , ,., ,,,,. ,,--m,-— --,—,., , ,-,, -..,.,, , ,,, ..-—-
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this case, the
to the sonic veloc.-

l+xl~
~Q~,

2X1
corresponds to the

inequality K&x ~K ~~in.

Figure 4 shows the quantities %x and Kmin as functions of

xl.
d
k+l

When xl = ~~ both quantities ‘Decomeequal to O. However,

in accordance with tlieremarks at the end of the last section, this
result is only of theoretical interest.

Now, conversely, Q rather than X1 will be considered as given
and fixed. It is found that

2-k

( ) 1+ 1 –k~xzz (XI2 -1)(02 -xl)

By application of equation (7b), the quantity within the brackets
becomes O. Furthermore, because from equations (8) and (~)

()W2QX2 —X1=X1 —-1 <(j
WI

for all values of xl> 1

The ratio po’/po (at a given value of Q) decreases with increasing
.—

Mach number.

Thus according to this reasoning also, the throttling factor

assumes the theoretical minimum ~alue
Kmi~Q) =0 correspondingto
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..4k+l
(Xl)mx = ~“ At the smallest value of xl that is in agreement

,. with the given value of Q, K becom68 largest. According to equa-
,, tion (13)

Because for xl> 1 the expression on the left side decreases with
decreasing xl, the smallest possible value of Q corresponds to the
smallest possible value of xl denoted by W. Accordingly, W is
determined by the equation

1+W2
2W =Q

whereby

*f 1+V2
2W is substitutedfor Q, it becomes evident that (because

W > 1) in order to create the identity

W=Q+~Q2-1

if the root is understood to signify its absolute value. When this
value is inserted in equation (16) (X2 becoming equal to 1) the
following is obtained:

.—

~&Q) .
{[

l+(Q+/Q2–1)2 lc+l ~ k–1——
2 2 - ~ (Q +&?+j]&

(19)

The right side of equation (19) is formally the same as that of equa-

tion (17b) if xl -1.is replaced by W . Q +. Q The mathematical
basis for this is that with a fixed value of xl the quantities %x
and are so related by the same equation as the quantities Q
and ~;l)min = W with a fixed value of Q, that in both cases the
expression for K in equation (16) undergoes the same simplification.
Directly behind the shock, sonic velocity exists in both cases; this
velocity thus occurs in every case wh.erei.neither the maximum quantity
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Of heat is liberated at a given Mach n~berj or the quantitY Of heat
being given, the condensation takes place at the lowest possible Mach

number. (Q)Figure 5 shows %x as a function of Q.

Because it was assumed (see Introduction) that the specific gas
constant R is not altered by the shock, an equation may be written

Po Po‘
——
poTo = ~’To’

From this equation and equation (2b) it follows that

Po‘ lPO’<,.— (20)
Po
—=Q2po=-

because it is true that Q ~ 1 and KS 1. The ratio of the stagnat-
ion densities cannot be greater than 1.

l’urthermore,because the loss of mss in the flow due tO the
precipitation of the condensed water is to be considered insignificant
and disregarded, the following statement of continuity is valid:

F*!p++l&+F~s

By consideration of equations (15a)
is obtained:

F++P+6a3$

and (2a), the following equation

Po 1F*t=F*—.
Po’ Q

and because of equation (20)

PO
F*I = F++ Q —>F*

PO’ =
(21)

The second equality sign is valid only when Q= 1 and po’/po = 1,

that is, when there is no shock at all. For the description of the
flow behind the normal condensation shock, a larger minimum cross
section must be specified.

Being a discontinuous, that is an irreverfiible,process, the
condensation shock involves an increase in entropy. If the entropy
per unit of mass of the flowing gas ahead of the shock is written as
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s=cplnTo-Rlnpo
,..., ,.. . .,. ..

and that behind the shock is written as

“s’ =cpln To’ -Rlnpo’

with the aid of equation (2b) the following equation is obtained:

As=s’-s=c p in Q2 -RlnK (22)

In accordance with equation (16) the following statement applies:
The increase of entropy due to the normal condensation shock is a
function of the Mach ~~ber at which the shock occurs and of the
quantity of hea~liberated. In the case of an ordinary normal com-
pression shock, the firs~member on the right side of equation (22)
is lacking; consequently,with a given throttling factor, the increase
of entropy due to a compression ~hock is smaller than that due to a
condensation shock.

FLOW PROPERTIES AT EXIT CROSS SECTION OF NOZZLE

The flow properties in the exit cross section FE of a wind-
tunnel.nozzle are the same as those in the whole test section of the
tunnel and are therefore of especial interest. All flow properties
referring to FE will be denoted by the subscript E; all flow
properties that have undergone alteration due to a condensation shock
will be denoted by a prime (except that those directly behind the
shock will have the 6ubscript 2 as previously). Behind the shock a
normal isentropic flow exists to which the known gas-dynamic laws can
be applied. These laws connect the conditions at any selected cross
section F downstream of the shock with the conditions directly
behind the shock; these conditions are therefore functions of
Xl = wl/a* and Q. Hence FE, xl, and Q are determinative of
the conditions at the exit cross section FE. If two of these
quantities are held constant, the conditions at the exit cross section
depend only upon the third quantity.

As previously shown, the quantity po/po’ increases both with
fixed Q and increasing xl (a transfer of the shock downstream)
and with fixed xl (fixed shock site) and increasing Q. Therefore,
if ~ and Q are held constant (or FE and Xl), in accordance

with equation (21), F*’ and therefore F*’/FE also increases with
increasing xl (or with increasing Q). If, however, F*’/FE
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increases, then in the region of suyersonj.cflows (which is what is
actually found behind the shock) ~’/Po’; ~’/Poj and TE’/To’
increase, while wE’/a*’ and the Mach number Vmz’ decrease.

With a fixed exit cross section FE and a given value of F*,
the flow properties in the nozzle are determined. ,

If Q also is regarded as fixed in accordance with equations (2a)
and (2b) neither a+’ nor To! are altered. Thus wE’ decreases

and ~’ increases with increasing xl. From the continuity rule,
pE’w~’ = constant, it follows furthermore that m’ increases and

from the equation of state ~i/~’TE’ = constant that ~’ also

increases. Because Mal increases with xl and q re~ins constant
with Q (comyare equation (3)), the conclusion is made that:

If in a nozzle the Mach number at which a certain specifie~—. .—
quant~y of heat ~f condensation is sup~lied to the flow is increased
~t is,

—,.—..—— .—..—
if the shock occurs fum~’wnstreaml at the exit cross..—

zn the ~~=r—and the alsolute va~f-~ie velocity are—
——

.——
less but the pressure, density, and temperature are greater.

.—.——..
——.

is,
with
a*l

ment
from

If in addition to FE, the Mach number Mal is considered (t~t
xl also) as fixed, then according to equation (2b) To’ increases

increasing Q and ~’ thus increases all the more. However,
also increases while wE’/a*’ decreases. Hence no general state-

concerning wE’ is possible. This impossibility is also evident
another line of reasoning. Namely, if the exit cross section and

the location of the shock coi~cide WE-’-=W2; according to equa-

tion (7d), W2 (which equals X2 Qa*) is a decreasing function of Q.

If on the contrary the exit cross section is assumed as infinitely large

{

.—.
k+].

wE ‘ . a*Q , —
k-1

where ~’ is an increasing function of Q. In accordance with’the
continuity rule, the behavior of the density with increasing Q thus
also depends upon the size of FE, that is (at a given F*), upon

the Mach number for which the nozzle is constructed. In order to
investigate the variation of ~’ as a function of Q, the calcul-a-
tions may again be started from the equation of state by writtng

%’ ‘E’
%’TE’ = ‘*To’ ~~
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‘From FE~’wE’ =
-’ ,..–..—.. .....-,

and with To’ . To Q2 (comyare equation

... ,,, ,. . .. . .

(2b)) is obtained

Because according to equation (2a), QB* = a*’, if TE’/To’ is also
expressed in the kno~-nmanner in terms of wE’/a*’

The equation of state thus assumes the

—

1
Ql–

~’ = constant
%TE i

a* t

Differentiationwith respect to Q yields

am‘
— = constant
bQ

[Wv “\

()
\

Because wE’/a*’ is a decreasing function of Q, ~ ~ <0 and
apE‘ aQ
— > 0 where
bQ m’ increases with Q.

The over-all result is as follows:

If in a nozzle, the site of the shock being fixed, the quantity
of heat of condensation liberated increases,the Mach number at the
exit cross section decreases while the pressure and the temperature
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increase. The behavior of the density and of the absol~te value of
the velocity de~ends upon the Mach number for which~~-~~i~~~r~e~

.... —----—.....—..,
—. .—.

is built.
---

If a normal condensation shock occurs in a nozzkLthe same
statements apply. ~A~mment:

—— —.——
It is believed that this sentence,

completely redundant in the present form, was intended to read: “If
an oblique condensation shock occurs..,”.] As a consequence of the
shock, q increases from q = O to a value q > 0.

In the absence of a shock, a Mach number equal to the reduced
Mach number that would exist at the exit cross section if a shock had
occurred will occur at a point in the nozzle upstream of’the exit
cross section. The quotient$ p/~oJ P/Po, T/To, and w/a*, which
are clearly functions of the Yich number, must at that point have the
same value as the corresponding exit cross section quotients ~’/P~’,
~’/Po’, TE’/To’, and wE’/a*’ if a shock occurs. Hence it follows
that

That is,

If in a nozzle, as a consequence of a normal condensation shock,
the Mach number at the exit cross section is reduced, at the exit—.—— -.. .—— ——
cross section the pressure and the density are lower and the tempera-
ture and the absolute velocity are higher than wouid correspond to
the same%ach number in the absence of the shock (this Ma~&~mber

-.....—..— —-
—.— — — .-—— -.—---

would then occur at a cross section wpstream of the exit cross section.).

If the last two of the three quantities FE, xl? and Q are
held constant, that is, if the site of the shock and the quantity of
heat of condensation liberated are regarded as fixed given values,
then with increasing FE pressure, density, and temperature naturally
decrease, while the Mach number and the absolute velocity increase,for
downstream from the shock a normal isentropic flow exists. Answering
the question of how the quotients ~’/~, ~’/~, TE’/TE) MaE’/MaE,

and WE’/~ behave as functions of FE is not equally easy.

By consideration of the last of these quotients first, in accord-
ance with equation (2a), the following equation is applicable:
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from which by formal development
..... .. . ... .- . ,,, ,. ... ,,, . ... ... ,..

Introduction of the known
a process of computation,

21

general relation between F*/F and w/a*,
which will here be omitted, leads to

()k-1 .V 2
.~wl

— ..—
k-;-la=.—- —_—

F a+
/w \2

p) -1
\/

The application of this relation yields

l--

1
k.~

- .——

k+l

—,
hjj \2
\)g%—

–1
-i

According to equation (21), F*’/FE >F*/FE and therefore
wE’/a*’ <wE/a* and the bracketed expression is thereby grea-ter
than O. The quotient wE1/wE thus increases with FE; it assumes
its least value if fi coincides with the shock front cross section,

and its greatest value if FE -m. wE’ w2
In the first case,

wEt WE

4

;< = w~
k+land in the second case — = —--= ——a*l a* k – 1’ By consideration of

equation (8), the following equation is obtained:

X2 WE’
Q —<-——
xl

~Q. WE
(23)

The gas velocity at the exit cross section can increase up to Q
times the original velocity,

The expression on the left side of equation (23) is equivalent
to w2/w~ < 1 (compare equation (8a)); that on the right side is
Q>l. Equation (23) explains the fact already mentioned that,
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assuming F* to be givenj
tion shock the %ehavior of
depends upon the magnitude
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uyon the occurrence of a normal condensa-
te velocity at the exit cross section
of this shock. The velocity decreases if

the exit cross section decreases and increases if the exit cross
section increases. This relation is evident. The shock effec”tsso
great an increase of pressure, density, and temperature that the
velocity is first decreased. Because the flow contains a greater
total amount of energy after the shock, with a sufficiently great
expansion, that is, with a sufficientlymarked decrease in the pro-
portion of caloric energy, the velocity must finally be~ome tw-ter
than it could have been without the shock.

In order to determine the exit cross section ~E at which the
velocity would remain precisely the same, the calculation maY be
started from the expression

1

According t: equation (21), F*’/F* = Q/K. By inserting the relation

%’ = wE = wE, the following equation is obtained:

The quantity K is a function only of the fixed selected values xl

and Q. Corresponding %0 tiE/a* in accordance with the known relation

a certain value of F*EE exists from which 5E maY be calculated.—
-2

Because Q>l and K<l, (1
‘E <k+l that is, fiE has a finitea~] k -1>

value.

From the continuity expression ~’wE’ = ~wE and equation (23)
is obtained

(24)

In the cross SeCtiOn ~Ej ~’ = m; upstream of that point,
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~’ >PE, and downstream ~’ < ~.

23

In s~ite of’.thecompressing
,- .,... ,. effect of ,the.condensation shock,”the.density at the exit cross section

can be less than it”would””’ha~eb~en in the “ab’i3en5e’”of“the’shock.

A8 a consequence of the energy equation

the following

where with i

io’=i +q

equation may be written

WE!’ wE2

‘+ iE’2 = ~+ iE + q

= CPT it follows that

WE2(WE12d () TE’

-z-- ._..l =CPTE 1–—
2 TE +q

wE

Because ‘E ‘/~ continuously increases with increasing FE, TE’/TE
must continuously decrease. The least value of this quotient is
reached when WE’/WE = Q. For this case, from the preceding equation,
if q is expressed in terms of Q in accordance with equation (3),
the following equation is obtained:

Because

WE
2

T

it follows from the previous

()TE’ ~
‘E E--- = i. (Q2 -1)

*CPTE=IO

equation that

()TE’\

F tin
= Q2

The maximum value for TE’/TE is T2/T1 (condensation shock occurring
at the exit cross section). Therefore the following equation is
obtained (compare equation (10)):

Q2

. .

1 k“-1-—
k+l ’22 TE‘

k-1
—— ~ Q2

1 2ZTE-—
k+l ‘1

(25)
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As may he seen, the statement is confirmed that, as the result
of a normal condensation shock (Q # 1)., the temperature at the exit
cross section is raised.

For the ratio of the Mach numbers, the following relation is
obtained:

Thus the ratio increases with FE “andas FE~~ the ratio approaches
the value 1, in accordance with equations (23) and (25). The least
value is that of Ma2@al. Accordingly, by use of equation (11) the
following equation i~’ob;ained:

This equation corroborates
reduces the Mach number at

The equation of state

the fact
the exit

yields

that the normal
cross section.

%’ ~’ ‘E’—.— —

(26)

condensation shock

?E ‘gqTE

The pressure ratio is, like ~’/~ and TE’/TEj a decreasing func-

tion of FE. By use of equations (12), (24); and (25) the following
equation is obtained:

1 i- X12 - & Qx~x2 J?E’>Q
1

k-1 2-— ‘m ‘
k+l ‘1

(27)

It is evident that the normal condensation shock increases the pres-
sure at the exit cross section.

In equations (23) to (27), X2 may in all cases be clearly
expressed in terms of xl and Q, inaccordance with equation (7d),
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The results previously
=. respect,to any nozzle cross

m& be chosen to substitute

25

derived are valid without change in
section downstream of the shock F that
for Fm. Therefore the--resultsmw be

s&narized as follows: ‘ With incre~sing distance downstream of-the
site of a condensation shock, the ratios p’/p, p’/p, and T’/T
decrease while Ma’/Ma and w’/w increase. The numerical’values
of the flow properties constituting the numerators and the values
of those constituting the denominators vary in the same manner.
Therefore it may be concluded that:

Downstream of a normal condensation shock, the pressure, the
density, and the temperature decrease more sharpl.ywith increasing
nozzle cross secti=and the Mach num%er and the velocity increase
more sharply than in the ab~e of the shock.. ..— .—

Translation by Edward S. Shafer,
National Advisory Committee
for Aeronautics.

—.
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